
Further Approximations for Elliptic Integrals 

By Yudell L. Luke* 

Abstract. The present paper develops approximations for the three kinds of elliptic 
integrals based on the Pade approximations for the square root. The work includes and 
extends our previous work on the subject to provide efficient approximations over a larger 
part of the complex k and 0 planes. 

1. Introduction. In previous work [1], [2], we gave some approximations for the 
three kinds of complete and incomplete elliptic integrals which were derived by 
using Pade approximations for the square root. The expansions are valid in a large 
sector of the complex plane and are far more powerful than the analogous representa- 
tions based on the binomial expansion for the square root. Nonetheless, the con- 
vergence properties of our previous developments weaken for k2 sin2 q near unity. 
In this paper, we develop new representations like those of [1], [2] to correct this 
deficiency. The present study is suggested by analogous work for power series 
developments of the first two kinds of elliptic integrals. In this connection, see the 
recent study by Van de Vel [3] and the references quoted there. For convenience 
and completeness, we also give the representations previously found. Our proofs are 
very sketchy as the details are akin to those previously used. 

2. Approximations for the Square Root and Other Data. 
n 

(1) (1 )-1= (2n + 1)- 12 EEm(1 - z sin2 Om)m + Vn(z) 
m2=O 

(2) (1 Z) = 1 - 2z (2n + 1)' E .2sin O2On + Wn(Z) 

lm=1 

_ 
z cosf 

(3) C-M = I ifm = O. diM 2 if m > 1 

(4) Om m=r/ (2n + 1). 

Let 

(5) er = 2-z 2(1 z)"/2 
z 

where the sign is chosen so that IerJ lies outside the unit disc which is possible for all 
z except z _ 1. Then 

4e (2n?3 /2) + 
(6) Vn(Z) = z1/2(1 e- e)E1 + -(nl~ 
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(7) W(z) = - 2(1 e-(2n+1 3 
2) 

and for z fixed, 

(8) lim { Vn(z) and Wn(z)} = 0, z 5 1, Iarg (1- z) I < 7r. 
nf-+co 

It is also convenient to have representations like (1) and (2) with z replaced by 
-z. Thus 

n 

(9) (1 + z)-/2 = (2n + 1)-X' j #n(l + z sin2 Cm)- + Rn(z) 
m=O 

(10) (1 + Z) = 1 + 2z(2n + 1)- E sin2 2 + S (Z) 
m=1 + z cos Om 

For the error terms, let 

(11) 
-e 2 + z + 

2(1 
+ 

Z)1/2 
z 

where the sign is chosen so that IerI lies outside the unit disc, which is possible for all 
z except -1 _ z _ - oo. Then 

4e- (2f+3 /2)q 
(12) Rn (z) = - /- 

(13) S(z) = z 1 /2 (1 + e-")e-(2n+2/2 

[1+ e (2n+l),] 

and for z fixed, 

(14) lim {Rn(z) and Sn(z)} = 0, z - 1, I|arg (1 + z)j < r. 

Finally, we have need for some integrals: 

(15) H(C a2)= J a 2 
? 0-a sin a 

(16) H(C, a2) = c-1 arc tan (c tan 0), c = (1 - a2)1/2 

Iarg (1- a2)1 < 7r, Iarg (1 +ictan0) < 7r, i = (_1)1/2. 

(17) H(, a) = (2g 1 g tan (a g tan real 
.1- gtn g=(2-1/,gtan ral 

H(C, a2) = tan 0 if a2 = 1 , 

(18) = r/2c if 0 = 7r/2 and Iarg (1-a2)1 < 7r, 

= 0 if 0 = r/2 and a2 > 1. 
r0 * 2 

(19) sin 2 doa = a-2[H(, a2) - 0] 
1a 2sin2 a 

In the above, the integrals are to be interpreted in the Cauchy sense when a2 sin2 6 
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> 1. Indeed, throughout this paper, we interpret integrals in this sense when 
appropriate. 

(or~~\ 2 COS ada f COS ada 
Jo cos2 a+ a2 sin2 a 1 1 (1 - a2) sin2 a' 

J(O, a 2) = (2c) -' In 1 + c sin ?, c - (1a2)l/2, c sin 0 1& l 

jarg (1-a2)1 < 7r, arg (1 4 c sin ) 1< 7r . 

(22) J(Q, a2) = (2c)-1 In csin + 1 c sin 0 real . 
c sinO - 1I sn~el 

(23) J(Q, a2) = sinG if a2 = 1 . 

(24) J(6, a2) = g-l arc tan (g sin0), g = (a2 -1)1/2, g sinG real . 

3. Approximations for the Elliptic Integrals of the First and Third Kinds. Let 

F(ol k, v) = (1-v2 sin2 a) (1 -k 2 sin2 a) 12da, 
(25)? 

v2 sin2 1, arg(1-k2) < 7r, arg(1-k2 sin2 )1 < 7r. 

Using (1) and (15) - (18), we get 

F(01 k, v) = 21+1 E em= - 2 sin2 Om 

(26) - 2k2 n 
sin2 2mH(4' kA2 

sin2 Om) 

(2n + 1)v2 ' 1 - (k2/V2) sin2 Om 

Qn (4) A;, V) = f (1 - V2 sin2 a)-Vn(kA2 sin2 a)da. 

fl (4)Ak; = - tan +____ 

(1 -2 sin2 4)(4n + 3) L 4n + 3 + O(n-)] + 0(e4ff), 

cosh 1 2V2 sin2 4(cosh 1) 

sinh cos24 (1 -V2 sin2 +) sinhb ' 

(27) 54 # an odd multiple of 2 ' 
2' 

= (n3(oh ~ 1 2L 4+27r sinh 11/2 e-(2n+l)~[ +0 (2)] 

n(2 k)=[(4n + 3) (cosh -1 ) (1V2) [14n + 3+ ( ) 

+ 0(-4ng), 

(2-Ak2)(coshb+1) 1 v2(coshR-1) 
2- ~ ~ 8sinbr 2 (1-_v2) sinhP 

where er is defined by (5) with z = k2 sin2 4). 
Clearly for fixed 4, k and v, under the conditions given in (25), 
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(28) lim Qrn(0, k, v) = 0. 
n-*oo 

In (21), the coefficient of G(q5, V2) can be replaced by (1 - k2/V2)-1/2- Vn(k2/V2) 
provided I arg (1 - k2/V2)1 < 7r. This should be used only when the magnitude of 
Vn(k2/V2) does not exceed the magnitude of Qn(4), k, v), which happens approximately 
when IerI with z = k2 sin2 2 exceeds IerI with z = k2/V2. In the case that 4, k, and v 
are real, this happens approximately when 1 < V2 sin2 4). 

Some numerics illustrating these approximations and the striking realism of the 
error formulations are given in my earlier works. It is clear that the accuracy 
weakens for values of k2 sin2 4) near unity. To correct this deficiency, we proceed 
as follows. We can write 

(29) 2 ~~~~~~~~sec ada 
F(q), k, ) 

=21 sin2 a)1+k2 ta2 )/2 (29) 
F( nv 1v2 sin (x) (l + k2 tan2 ae)' 

k'2= 1-k _ arg (1 + k'2 tan 2))I < i7 

Now use (9) and (20) - (24). Thus 

- 1 -m( - k2 sin 2 Om)2 2Om 

(2n + 1) (1 - V ) m=O 1 - (ks2/( - n2)) in2 m J(4J k'2 5in2 Cm) 
2 n 

, J(4) 1- V2 ~ (2n + 1) (1 
_ 

-2) m=O 1 - (/'2/ (1 - 2)) sin2 Om 

+ Sn(1) ,k V) , 

k f sec aIRn(k'2 tan2 a)da Sn (/d k;, v) = 2 * 2 1 
(30) ?o 1v sln a 

Sn (4),k, v) = - 2e 2~1 si 4 1[ + '~+ 0(n)]+Oe~) 
(1 -v sin 4)(4n + 3) L 4n + 3 

sin 2 
sinh[ 2(1- - 

2 
sinh - 

(31) 1 + 
cosh -1 I-_ 2 V2 sin2 cosh q-1 

where e7 is defined by (11) with z = k'2 tan2 4. Then under the same conditions as in 
(29), with 4, k and v fixed, 

(32) lim Sn (4), k, v) = 0. 
n-+oo 

The approximation (30) is convenient even when k'2 tan2 4) > 1. Notice that if 
4 - wr/2 and k --1 so that COS2 )= - 1k2 then k'2 tan2 4 -- 1 and e -77 3 -2'/2 
=0.172. The coefficient of J(q5, 1 -V2) in (30) can be replaced by 

V2[(I - V 2) (k - 2)] 1/2 + V2(1 - V2)-lVn (k'2/(1 _ V2)) 

provided jarg (1 - k'2/(l - V2))j < ir. However, this should not be introduced 
unless the magnitude of Vn(k'2/(l - V2)) is approximately equal to or less than the 
magnitude of Sn(q$, k, v). 

To get a useful approximation when q is near ir/2, we write 
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( J sec ada 

2 k, - F(4, k, o (1k-v2 cos2a) (k12 + tan2 )1/2 

(33) = sec 6(1 + k'2 tan2 6)12d6 

o 1-v2 + k'2tan2 0 

k'tan -cot, v2 sin2 1, arg (1 + k'2 tan2 l) < 7r. 

Now use (10). We find that 

F( 2k, v- F(0, k, v) (1- 2)-)J( _ ) 

X I 2(1 -V) sin2lOm 
2n + 1 m=l1 - (1 )COS2 Om 

(34) 2 sin 2Om 

2n + 1 m=1 (1 V)CO m 

X J( t, k'2 Cos2 Om) + Mn(4), k, v) 

Mn(4), k, v) = sec OS&(k2 tan2 O)dO Mn (PI , = 
_ 2? + tan 2 0 

2 (cosq/ (I + si ) n1( - sin 0:)) 
M~n (01 k, v) 

= 
2 .2 0)/2 (I_2 2 k (1- sin v)(1-v sin 4) (4n + 1) 

(35) X [1 + 4n + 1+ O(n2)] + (c sino) 

0- = 2 sin - 1_ k 2sin) _2(1-V2)sin) 
-2k 2sin 2iI_ 1- 2sin 2+ 

In (34), the coefficient of J(V/, k'2/(1 - V2)) can be replaced by v(1 - V2)-l 

(1 - v2)-'Wn(1 - v2) provided I arg vI < /2. This replacement should not be used 

unless approximately the magnitude of Wn(1 - v2) is less than the magnitude of 

Mn(), k, v). If v and 0 are real, e-r = ( -v)/(l + v) when z 1 - V2. Thus, use 
the alternative form provided 

(1 -V)/(1 + v) < (- sin 4)/(1 + sin p) 

i.e., when sin 4 _ v < 1. Under the same restrictions as in (33), with 0, k, and v 

fixed, 

(36) lim Mn (4 k, v) = . 

Our technique is applicable to derive an expansion relating K(k) = F(ir/2, k, 0) 
and K(k'), where k'2 = 1- k2, since it can be shown that 

-') l'2)K(k') = - 2 f7 /2 (ln sin2 6)dO (37) K (k) + 7r-1(Ink ir(k) - 0 (1 - k sin 2 0)1/2 
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Thus 

n 
K(7c) + r-1 (In k'2)K(k') = 2(2n + 1)-iln 2 + 2 E am-1 in (1 + am) +An(k) 

m=1 

(38) am = (1 - k2 Sin2 Om)12 

2 7r/2 

An(k) = - 2 f (In sin2 0)Vn(k'2 sin2 0)dO, 

A39 ) (2n7r) ( (+ k) [1 32nk + O(nF)] 

+0( 1 
_ 

k]4- 

Hence with k fixed, Iarg k I < 7r/2, 

(40) lim An(k) = 0. 
nf-40o 

4. Approximations for the Elliptic Integral of the Second Kind. Let 

E(QP k) = f (1-k2 sin2 a) 12da, 
(41) 0 

larg (1-k2) <k arg (1- k2 sin24)l <Xr. 

Here we use (2) and (15) - (19). Thus 

n 
E(?, k) = (2n + 1)o - 2(2n + 1)-1 j tan2 OmH (, k2 Cos2 Om) + Tn (o k), 

(42) m=1 

Tn (Q, k) = Wn (k2 sin2 a)da . 

Tn ( k) = - 2e-(2n+l) tan 
4(1 

-k 2sin 2) [1 + el + 
O(n-2)] (4n +1) L 

4n+1I 

+ O(e -4n) 

2k2sin24 (cosh .+ 1) (cosh 1) 
1 = sinh r cos2 4 sinh v 

(43) 5 w an odd multiple of 2 - 
2' 

2w7r cosh I ~)11/2 2 1 2 2 

Tn( 
yk L (4n + 1) sinh D j e - k sin ) 

X I + 
2 + 1+0 (n -2)] + O(e-4n?) 

(9k2 sin2 -2) (cosh -1) 1 
"2 =8 sinh 2 
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where et is defined by (5) with z = k2 sin2 p. Under the same conditions as for (41) 
with q5 and k fixed 

(44) lim T. (0I k) = 0 . 
nf-*oo 

Numerical examples illustrating (42) and the remarkable efficiency of the error 
formulas for Tn(q5, k) are given in [1], [2]. 

After the manner of getting (30), we find 

E (0, k) = pn (k) sin + + 22k' E 
sin OmJQP, k'2 cos2 am) E(4~,k)Pn~k~sin4~+2+i 1k2CO52m 

+ Un (h, k), I arg (1 + k'2 tan2 4) < Jr, 

(45) p(k) = 2k'2 n sin 2m _ 2ku { ( )2n+1 
pn~k) = 

12n, + 1 mE- -Zc2 COS2 tam :L 

Un (, k) = I cos aSn(k'2tan2 a)da . 

Un k) = k- 2e-(2n+l)q(I-k2 sin2 4) sin [ 1 + 4 + (n 2)l + O (e- ) 

(46) (4n + 1 ) L +I 
2 sinhn _3 (cosh + 1) cos24+ 

" coshw + I1 sinhq 
where el is defined by (11) with z = k'2 tan2 q. Thus for q5 and k fixed and restricted 
as in (45), 

(47) lim Un (, k) = 0. 
n- woo 

In (45), we can take pn(k) = k provided that 12ku/( -u)I < IUn (, k)L. In this 
connection we notice that if k and 4 are real, then (1 -k)/(1 + k) < e-t) when 
k tan 4 > 1. 

A straightforward analysis shows that 

(48) E(k) - E(, k) = k'2F(w, k, k), k' tan co = cot , 

and so we can apply the expansions previously developed as appropriate. 
A relation analogous to (37) for the complete elliptic integral of the second 

kind is 

E(k) = 7r E(k') + ,, K(k') - 7r 12 + Ink (} d-Ok2 2 0)1,2 

2k'2 7 /2 sin2 (In sin2 O)do 
T ? (1-k,2 sin2 0)1/2 

and from this one can derive the analogs of (38) - (40). The result would be rather 
complicated and not as efficient as the known expansion for E(k) in powers of k'2. 
Rather than use the expansion which could be found from (49), a much more 
efficient procedure would be to employ the Legendre relation, 
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(50) E(k)K(k') + K(k)E(k') - K(k)K(k') = r/2, 

and the appropriate expansions for K(k) and K(k'). 
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